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Abstract—The heat and mass transfer coefficients around the porous medium put on the flat plate at a
distance from the leading edge of the flat plate are calculated numerically for two-dimensional laminar
flows. To verify the analytical model developed and invoke the heat/mass transfer analogy, an experiment
is carried out by the naphthalene sublimation technique for the case of negligible radiation field. From the
effects of the wake, the Sherwood number is maximum around the region where the porous medium is
attached. The theoretical results correspond well with the experimental results at small Darcy number.
Permeability of ceramic blocks used for experiment is also measured and the Forchheimer equation is
applicable in our measurement range.

1. INTRODUCTION

AN UNDERSTANDING of the heat and mass transfer
characteristics of porous media is important for many
applications in science and engineering. There are
numerous practical situations in which flow passes
partly through and partly around a porous body.
Common examples are flow over the Earth’s surface
in the presence of obstructions such as trees, grains,
flow over high porosity insulations, and flow for some
industrial drying and cooling processes.

Several workers have studied the behavior of wind
well inside and above a prototype forest [I, 2]; others
modeled a forest or crop for wind tunnel measure-
ments [3, 4].

For forced convection flows, it has been shown that
for a Reynolds number based on particie or pore size
larger than unity, a velocity square term (|U|u,) to
account for porous inertia effects must be added {5].
For higher velocities, many researchers have modified
Darcy’s law by an addition of convective inertia terms
(u,0u;/6x;), porous inertia terms ({U]u;) or viscous
terms (u.0°u;/0x}) [6]. The equation with all of the
three terms added approaches the theory of the porous
medium (simple Darcy’s law) as the permeability K
decreases, and it goes to the standard Navier-Stokes
equation for a fluid as K increases ; consequently the
analysis connects the two theories.

The idealized model used in the present numerical
analysis is shown in Fig. 1, where the two-dimensional
medium is assumed to extend to infinity in both direc-
tions. One region is a high porosity layer bounded by

an impermeable layer on the bottom surface. The
upper surface is bounded by a free stream region. An
imposed flow is specified at the leading edge of the
two-region system.

The energy equations were solved numerically to
see the effects of radiative transfer and the results are
presented in terms of the heat transfer coefficients and
temperatures.

To verify the analytical model developed, an exper-
iment was carried out by the naphthalene sublimation
technique for the case of negligible radiation, which
has been used by several researchers [7, 8] to obtain
mass transport results. Permeability of ceramic blocks
used for experiment was also measured.

By using the analogy between heat and mass trans-
fer, the Sherwood number presented here may be con-
verted to the Nusselt number as in the non-porous
region if the analogy relations in the porous region
are verified from the experimental measurements.

2. THEORETICAL ANALYSIS

The conservation equations of a porous medium,
which is regarded as homogeneous and isotropic, were
derived in terms of the superficial (Darcian) velocity
within the porous medium using a control volume [9].

Porous region.
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NOMENCLATURE
h back-scattered fraction factor fu wall emissivity
C concentration I dynamic viscosity
D mass diffusion coeflicient p fluid density or naphthalene vapor
Da  Darcy number, K/H* density
ey black body emissive power, ¢ T* O, absorption coefficient
F parameter O, extinction coefficient
H height of porous medium a, scattering coefficient
h, convection mass transfer coefficient T optical thickness, o, H
K permeability of porous medium by dimensionless wall temperature, T,/T,
k thermal conductivity w scattering albedo, o,/q..
/ upstream length
m mass transfer rate
N convection—radiation flux parameter Subscripts
Nu  Nusselt number e effective
P pressure f fluid
Paw  haphthalene vapor pressure on the wall iLj tensor notation
Pe Peclet number m mass transfer
Pr Prandtl number n function of Nusselt number
0 dimensionless radiative heat flux, ¢/c T p porous
q radiative heat flux r radiative
R universal gas constant s source or function of Sherwood number
Re Reynolds number, u,, H/v w wall
Sc Schmidt number, v/D o€ free stream.
Sh Sherwood number
T temperature
u, v x-and y-direction velocities, respectively  Superscripts
X,y x-and y-coordinate. +, — positive and negative v-direction,
respectively
Greek symbols * dimensionless.
& porosity

Ju Qu d F e
{), (u: +r3 > = —ﬁu—p)llUlqu'u‘V“u
P\ éx €

& cy dx K /K
(2
p[ ov v dp pF e s
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g’ <u0"x+vﬁy) dy K’ \/KIUIU+ P
(3)
0T 6T ,
Py (u;\ +v ;}) =k VT-Vg, 4)
¢ oC
u (,C +US:" =D.VC (5)
éx éy
where

|U| — (u2+02)l‘2
k. = eki+(1—e)k,
D, =¢D.
Models for the effective viscosity y. of the porous

medium are needed. It has been found that taking
. & u in Brinkman’s extension provides good agree-

ment with experimental data [10] and is adopted in
the present work. From the Ergun equation [11] the
value of F is 1.75/,/(150¢") and is adopted in the
present work.

The conservation equations outside the porous
medium are easily derived from the equations that
apply within the porous medium by setting ¢ - | and
K- oc.

The temperature gradient in the x-direction is
assumed to be small compared with that in the p-
direction, so that g,(x) « ¢,(»). Thus the radiative
flux is simply expressed as a one-dimensional approxi-
maiion

g (=g (M —q ). (6)

The two-flux model is expressed as

dg* . _
T —20,9" —20.,bq" +20,6,+20,bg )
)
dg - ) +
— g = —20,4" —20.bg +20,e,+20bg". (8)
))

The solid boundary and matrix are assumed diffuse
and gray. It is also assumed that the fluid itself is
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FORCED CONVECTION FLOW
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FiG. 1. Schematic of the porous medium at the system boundary with net radiation to the porous medium.

transparent whereas the porous materials emit,
absorb, and scatter radiation. The coupled ordinary
differential equations describing the radiative transfer
in the porous medium are split into two second-order
differential equations which are coupled through the
boundary conditions. These equations can be solved
by the method of variation of parameters.

The dimensionless terms for conservation
equations, boundary conditions, two-flux solutions,
etc., are not described here because of space limi-
tations. For more detailed solution processes, see ref.

[9].

2.1. Boundary conditions

The velocity and pressure profiles upstream
(x = —/1) of the porous medium are free stream
values. A given boundary layer velocity profile is
required at the starting point of the porous medium
(x = 0), and the distance from the far upstream point
(where the velocity distribution is flat) to the start of
the porous medium must be specified. The u-velocity
profile at the starting point (x = 0) is described by a
parabolic profile.

With known u-velocity profile and upstream
distance, the v-velocity profile and pressure profile are
determined from the assumptions that the v-velocity
increases linearly from the starting point to the porous
medium, and pressure is equal to the free stream press-
ure over the porous medium. We assume that the
temperature has a similar profile to the velocity, and
the concentration has a hyperbolic profile. No slip is
allowed on the plane surface (y = 0). The pressure
boundary condition is determined from the y-momen-
tum equation on the plane surface. The temperature
and concentration given on the plane surface are
assumed constant with x.

At a large value of y, the boundary layer properties
match the free stream values. The pressure is assumed
to be at the free stream pressure everywhere outside
the porous medium.

Far downstream from the starting point, the bound-
ary conditions are unknown. Thus we assume that no
more changes occur, that is, the first derivatives are
all assumed to be zero.

At the porous/fluid interface (y = H), we must have

continuity of superficial velocity, normal stress, tem-
perature, heat flux, concentration, and mass flux.

For two-flux model solutions, the source flux is
assumed constant outside the porous medium. At the
wall, the outgoing energy is emitted plus reflected
energy.

2.2. Method of solution

The dimensionless governing equations were solved
numerically using the finite difference method with
associated boundary conditions. The numerical cal-
culations began at the leading edge of the porous
medium and proceeded in the streamwise direction
to far downstream. The conservation equations were
solved using the Thomas algorithm and the pressure
equation derived by the x- and y-momentum equa-
tions is elliptic and was sclved using the successive
overrelaxation method (SOR).

The dimensionless parameter, Nu(x), termed the
modified Nusselt number, provides a measure of the
convection, conduction, plus radiation heat transfer
occurring at the surface

or*

!Nui = — Ey‘; -

Pe

0+ ']—V_Eer,r‘:zO' (9)
The Nusselt number consists of two components ; the
first term on the right-hand side of equation (9) is due
to convection plus conduction whereas the second
term is due to thermal radiation.

The dimensionless parameter, Sh(x), termed the
Sherwood number, provides a measure of the con-
vection mass transfer occurring at the surface

hoH  0C*

e

(10

2.3. Results

To see the effects of radiative heat transfer, the
energy equation was solved numerically and the
results are presented in terms of the heat transfer
coefficients and temperatures.

Figures 2-5 show the heat transfer coefficients with
the effect of radiative transfer included (Q, = 0 ~ 3),
using Re =500, Da=0.005 £=098, =405,
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b=05, & =05, ¢, =095 and t=1. Figure 2
shows only the convection heat transfer coefficient in
the absence of radiative transfer. The rate of decrease
is almost constant along the x-direction.

Figures 3-5 show the individual heat transfer
coefficients calculated for convection, radiation, and

convection plus radiation (here called the total heat
transfer coefficient). The total heat transfer coefficient
in Fig. 3 increases at first with the effects of the radi-
ation, but past the location of x/H = 2, it decreases
even if the radiation term is still constant. This is
because the convection term decreases along x, and
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F1G. 5. Nusselt number (Q, = 3).

at around x/H =2 the total heat transfer is at a
maximum with the radiation plus convection.

By increasing the source flux, the total heat transfer
coefficient also increases as shown in Figs. 4 and 5. It
1s obvious that the effect of radiative transfer becomes
more significant to the total heat transfer as the fluid
inertia decreases. The convection heat transfer is
larger than the radiation even if the source flux still
increases. This is the reason that the convection heat
transfer coeflicient also increases with the effect of the
radiative transfer, by increasing the source flux.

From the results, the heat transfer with no radiation
continuously decreases along x. With low values of
source flux, the heat transfer increases and at small
values of x, decreases again. With high values of
source flux, the heat transfer still increases with x
though the rate of increase is smaller far downstream,
obviously because of the increased radiative absorp-
tion from the larger source strength.

Figure 6 shows that the temperature continuously
increases in the porous medium along the x-direction
with the source flux of Q, = 3. Temperatures increase
until y/H reaches about 0.85 along the y-direction.
Maximum temperatures occur around y/H = 0.85.
Past this point, temperatures decrease because of iner-
tia effects in the free stream region and boundary
conditions at the interface, since the temperature
gradients are almost equal (6T /dy ~ 0T /dy). The
maximum temperature in the porous region around
y/H = 0.85 is approximately 1.5 times larger than the
{ree stream temperature at x/H = 8.

3. EXPERIMENTAL ANALYSIS

To verify the analytical model developed, an exper-
iment was carried out using the naphthalene sub-
limation technique for the case of negligible radiation

field. This was conducted to study the effects of a
layer of porous medium on mass transfer from a flat
naphthalene surface and to invoke the heat/mass
transfer analogy.

3.1. Experimental procedure and data reduction

A flat plate of naphthalene was cast, and a layer
of rigid porous ceramic block [12] with the size of
9.7x20.0 x 1.905 (or 1.11) cm was put on the naph-
thalene surface at a distance of / = 6.5 cm from the
leading edge of the naphthalene plate as shown in Fig.
1. This assembly was placed in a once-through, low-
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Fic. 6. Temperature profile (Q, = 3).
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speed wind tunnel. The size of the working area in the
wind tunnel, in which the naphthalene cast on a steel
plate was installed, was 20 x 61 x 20 cm.

The naphthalene mold was a thick, 19x 19 cm flat
square, steel block with a 15x 17 cm square, naph-
thalene surface, which was flat and smooth. In each
experiment, the distribution of the local mass transfer
coefficient was obtained by measuring the elevations
at discrete points on the naphthalene surface before
and after air was circulated through the test section.
The elevations at 238 points (17 points in the spanwise
direction, 14 points in the streamwise direction) were
measured in a region on the naphthalene surface.

During the experiments, air was always maintained
at 22+ 1 C. The temperature of the air was measured
and recorded periodically. The duration of the test
run, which lasted about 2-3 h, was recorded with a
watch. Supplementary experiments were also per-
formed to determine the effect of natural convection
during the elevation measurements.

The local mass transfer coefficients are determined
from the measured change of the elevation (Ay) at
each of the measurement points, the duration of the
experiment (Ar), the density of solid naphthalene (p,).
and the difference between the naphthalene vapor
density at the plate surface (p,) and the naphthalene
vapor density in the free stream (p, )

m p\m
h, = -
(Pu—p.)
where 71 is the mass transfer rate (i.e. the sublimation
rate) per unit area.

From the Chemical Engineer’s Handbook [13], data
for naphthalene are D=062x10"" m® s ',
p. = 1145kgm™> M = 128.16 kg kmol~'. The naph-
thalene vapor density at the wall is calculated from the
vapor pressure-temperature relation for naphthalene
[14] in conjunction with the perfect gas law

(pu—p, )AL (I

pl\\hM

e = ?i—vk (12)

where

6713
log g Py = 11.884 — ——

The free stream naphthalene vapor density is assumed

to be effectively zero. Thus, the local mass transfer

coefficient and Sherwood number are

pAy

/1”7 = prt (13)
hoH

=Dt 4

Shy ==y {14}

3.2. Measurement of permeability

Permeability of four rigid porous ceramic blocks
was measured by forcing air through the porous
material, measuring the pressure drop across the
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porous material, and the flow rate through it [15]. The
application of Darcy’s law in its simplest form is

dp o
dv = k" (15)
At higher flow rates, the Forchheimer equation is

applicable

dp . pF ,

dy = K,ll+ ;Kll . (16)

Y

The above equation can be written in a straight line
form as follows:

dp/d.
(dpdx) _ .+ B (17)
u
where
H
A= K
_PF
= \/K‘

The number of experimental points for each of the
samples was over 15. The range of the flow velocity
was from about 0.02 to 0.46 m s~ '. The results are
listed in Table 1. The curve fitting equation listed in
Table 1 is (dp/dx)/u vs u shown in Fig. 7. By fitting a
straight line to the data, the permeability K and the
constant F can be calculated from equation (17).
From Fig. 7 and equation (15), the value of A4 should
be constant if we use Darcy’s law. Thus Darcy’s law
is not proper in our experimental range.

3.3. Input parameters

Three different rigid porous ceramic blocks (Sam-
ples Il and IV in Table 1) were considered here. The
boundary layer thickness for velocity at x = 0.065 m
(the starting point for the theoretical input) was
assumed to be equal to the height of the porous
medium. The Sherwood number at the leading edge
of the porous medium was assumed to be equal to the
Sherwood number for the experiment. The momen-
tum and mass equations for laminar flow were used
since the total length measured for the experiment
was within x = 0.15 m, which gives a laminar flow
Reynolds number.

In each plot, four lines are shown; one is for the
experimental result, another is the theoretical result,
and the other two lines are results from equation (18)
for laminar flow and equation (19) for turbulent flow
over the flat surface without the porous medium. Both
equations were used to check whether both exper-
imental and theoretical results were reasonable. The
velocity of ¥ = 6.5 m s~ ' was used in the experiment.
The local Sherwood numbers based on the length scale
of the porous height are

h, H 2
Shy = ';) = 0.332Re};* S¢"*(H|x)"? (18)



Constant,

Permeability,

Fitting equation

Table 1. Experimental measurement of permeability
Pressure

Theoretical and experimental heat and mass transfer in highly porous media 2129

Velocity

Density

(-3
e283 o 1
N R2eS s
ceee g A - SAWLE I ]
@M — SAMPLE  II
o % — SAMPLE III
s © - SAMPLE IV
o mow e 4 1
S les2s2 g
g, X X X X :
x| 58S A 1
~ oG — o
73
g 1
¥
S~ =
f 32
Bl 3383 z g ]
v R8s a 2 "
z | R=HE 2
x | +F++ & o
= | a0~ = 8 4
CRREESS
= a- e
S 2
2 1
-
323 e -
A AR o —~
\ [t Y -
o=~
El++++ 2
23333 5 ,
Sitt++ 8
o —_ e
| 5 =5 8 %o. 00 0. 10 0.20 0.30 0. 40 0. 50 0.80
Fee U (ws)
—_ F1G. 7. Pressure drop through the porous media.
T g
Elge3y| &
z[2977| =
S e v en =)
g |¥E=T 1 8
: E
Q
&
_\ DN — L(Z hmH 4/5 1/3 /5
2| adew S Shy, = D = 0.0296Re}}> Sc'*(H/x)'". 19)
15333 &
g 23888 =
§ ceeee '§ 3.4. Experimental and theoretical results
& Figure 8 shows that the experimental Sherwood
3 number is very large near the leading edge of the
o £ naphthalene plate because of the developing bound-
E 32 oug & ary layer. The Sherwood number decreases very shar-
5 2 ly near x = 0.055 m and increases very rapidly before
S £ ply y rapidly
g the leading edge of the porous medium from the
3 effects of the wake, and is maximum around x =
_ 2 0.065 m where the porous medium is attached. Past
IE SR O x = 0.065 m, the Sherwood number decreases very
o cocso g sharply from the effects of the porous medium.
~ 5 Around x = 0.12 m, the Sherwood number increases
8 again from the effects of the wake over, at the side of,
= ErE 5 '§ and behind the porous medium. This occurs because
& SN g the flow separates over, at the side of, and at the
3 i back-facing step formed by the aft end of the porous
w»n . . .
g,_g material. Both experimental and theoretical results
= & 5 correspond well with each other through the porous
— — ) . .
E —~=22 &2 medium. The results from the above two equations
Sl (without considering the porous medium) are smaller
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at x = 0.075 m, since the developing boundary layer
effects and the wake effects are larger than the porous
effects within the porous medium. But past x = 0.075
m, the latter results are much smaller than the former
results.

In Fig. 9, the characteristics of the Sherwood num-
ber show similar trends to Fig. 8. The experimental
and theoretical results correspond well with each
other.

Figure 10 also shows similar trends to Figs. 8 and
9 over the entire regions. Both experimental and
theoretical Sherwood numbers of Fig. 10 (Da =

K.-B. Lee and J. R. HowELL
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1.2x 107°) are larger over the entire regions than
those of Fig. 8 (Da =2.1x10"*), using the same
Reynolds number of Re = 4538. The differences
between the experimental and theoretical results are
larger through the porous medium. The results from
equations (18) and (19) are much smaller than those
for the experiment over the entire region. Thus, at
larger Darcy number both the developing effects and
the wake effects greatly affect the flow preceding the
porous medium. The wake effects through, over, at
the side of, and at the back of the porous medium also
affect greatly the flow. They apparently cause greater
flow penetration at the leading edge of the porous
‘step’ due to the presence of a rotating vortex there,
while the wake at the back of the porous block appar-
ently causes a flow reversal that penetrates the rear of
the block and causes a slight increase in the mass
transfer coefficient there. These effects were not con-
sidered in the analytical mode. The Sherwood number
and Reynolds number are based on the height of the
porous medium.

3.5. Heat and mass analogy

The mass transfer results presented here may be
converted to heat transfer results by employing the
analogy between heat and mass transfer.

3.5.1. Non-porous region. According to the analogy,
the conversion between the Sherwood and Nusselt
number results can be accomplished by noting the
relations [16]

Sh = Cf(Re)Sc”
Nu = Cf(Re)Pr".

(20)
@n

The above equations are inferred from both theor-
etical calculations and experimental measurements for
laminar flow, and from only experimental measure-
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ments for turbulent flow. The specific values of the
coefficient C, the function f(Re), and exponent n vary
with the nature of the surface geometry and the type
of the flow (laminar or turbulent), but they are inde-
pendent of the nature of the fluid [17].

From the above equations, it follows that

Nu = (Pr/Se)'Sh. 22)

The exponent # is 1/3 on the flat plate in which air is
a flowing fluid and the Sherwood number would be
multiplied by the ratio (0.712/2.56) with the exponent
term of 1/3.

3.5.2. Porous region. From the conservation equa-
tions normalized by use of dimensionless variables
and equations (2)-(5) within the porous region, the
momentum equation is a function of not only Re
but also Da and £ The mass and energy equation
are a function of the effective Schmidt and Prandtl
numbers. respectively. Thus, following the same pro-
cedure as above, the Sherwood and Nusselt numbers
are

Sh = C f.(Re, Da,£)Sc (23)
Nu = C, f,{Re, Da, ) Pr}. (24

ifC,=C, f =/, and n, = n,, equation (22} can be
applied for analogy in the porous region as in the non-
porous region

Nu = (Pr./Sc.)'Sh. (25)

But the relations should be first verified from
the experimental measurements. These will become
another good research topic.

4. CONCLUSIONS

The overall heat transfer coefficients were cal-
culated numerically to see the effects of radiation
around the porous medium put on the flat plate at a
distance from the leading edge of the flat plate. To
verify the analytical model developed, an experiment
was carried out using the naphthalene sublimation
technigue for the negligible radiation fields and a com-
parison was made between both results in terms of
the Sherwood number.

The following conclusions are obtained below,

(1) The heat transfer coefficients show that by
increasing the source flux (g, = 0-3) the effects of
radiative transfer become more significant to the total
heat transfer because of the increased radiative
absorption of the porous materials.

(2) The theoretical results correspond well with the
experimental results at the smaller Darcy number
(Da = 2.1%x107%-7.2x 107°) and appear reasonable.
But at the higher Darcy number (Da = 12x107%),
the experimental results are much larger than the
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theoretical results due to both developing boundary
effects and wake effects around the porous medium.
The numerical analysis did not consider these effects.

{3) The permeability of ceramic blocks used for
experiment was also measured and the Forchheimer
equation is applicable in our measurement range
(K=142%x10""-7.67x10%),

(4) If the following relation, Nu = (Pr./Sc.)"Sh, is
verified in the porous region from the experimental
measurements as in the non-porous region, the mass
transfer results presented here may be converted to
heat transfer results by employing the heat/mass
analogy.
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TRANSFERT DE CHALEUR ET DE MASSE THEORIQUE ET EXPERIMENTAL DANS
LES MILIEUX FORTEMENT POREUX

Résumé—On calcule numériquement pour les écoulements laminaires bidimensionnels sur une plaque
plane, les coefficients de transfert de chaleur et de masse autour d’un milieu poreux placé a distance du bord
d’attaque. Pour vérifier le modéle analytique, on conduit une expérimentation avec la technique de
sublimation du naphtaléne dans le cas d’un champ radiatif négligeable. A partir des effets de sillage, le
nombre de Sherwood est maximal autour de la région ou le milieu poreux est attaché. Les résultats
théoriques correspondent bien aux résultats expérimentaux aux petits nombres de Darcy. La perméabilité des
blocs de céramique utilisés pour I'expérience est aussi mesurée et ’équation de Forchheimer est applicable
dans le domaine de mesure considéré.

THEORETISCHE UND EXPERIMENTELLE UNTERSUCHUNG DES WARME- UND
STOFFUBERGANGS IN HOCH-POROSEN MEDIEN

Zusammenfassung—Die Wirme- und Stoffibergangskoeffizienten in einem pordsen Medium, das in groBer
Entfernung von der Anstrémkante auf einer ebenen Platte liegt, werden fiir zweidimensionale laminare
Strémung numerisch berechnet. Um das entwickelte analytische Modell zu iberpriifen und die Analogie
zwischen Wirme- und Stoffiibertragung heranzuziehen, wird fiir den Fall vernachlissigbarer Strahlung
mit Hilfe der Naphthalin-Sublimationstechnik ein Versuch ausgefiihrt. Aufgrund der Nachlaufeffekte ist
die Sherwood-Zahl in der Region maximal, in welcher das pordse Medium angebracht ist. Die theoretischen
Ergebnisse stimmen fiir kleine Darcy-Zahlen gut mit experimentellen Resultaten iiberein. Zusétzlich wurde
die Permeabilitit der beim Versuch verwendeten keramischen Blocke gemessen. In dem hier verwendeten
Bereich ist die Forchheimer-Gleichung anwendbar.

TEOPETHYECKOE U 3KCINEPUMEHTAJIBHOE UCCIIEAOBAHUE TEILIO- U
MACCOIIEPEHOCA B BBICOKOTIOPUCTBIX CPEJAX

Amnoraumms—YHCIEHHO pacCHMTHBAKOTCH KO3DUIHEHTHI TEIUIO- ¥ MaccomepeHoca BONM3H NMOPHCTOH
cpenbl, PacloJIOKEeHHON Ha IUTOCKOH IUIaCTHHE BHAJH OT ee NepeaHell KPOMKH, B Clyyae ABYMEPHBIX
namMuMHapHbix Teveuii. C LeNbIO NPOBEPKH aNEKBATHOCTH Pa3paboTaHHONH TeopeTHYECKOW MOIENH H
YCTAHOBJICHHSI 2HAJIOTHH MEXAY TEIUIO- H MaCCONEpPEHOCOM NMPOBOANTCA IKCIIEPHMEHT no cybanMaunu
HadTanuua. bnaronaps spdexram cnena yncio llepsyna nocTuraeTr MakCHMyMa Ha y4acTKe, TAE HaXo-
OUTCA TOPHCTas cpeda. TeopeTHueckHe pe3ybTaThl XOPOLIO COTJIACYIOTCS C JKCNEPHMEHTAJbHBIMH
JIaHHbIMH TipH MaiioM 4Hcie [lapen. MaMepseTcs TPOHHIIAEMOCTD HCTIOJIB3YEMbIX B IKCIIEPHMEHTE Kepa-
MHYeCKMX GJIOKOB, M HaifeHo, 4TO B Npenenax NaHHOH 06JacTH HM3MepeHHH NMPHMEHHMO ypaBHEHHe
dopuuxaiimMepa.



